Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

1-METHYLALLYL (CYCLOOCTATETRAENE) TITANIUM

H. K. HOFSTEE, H. O. VAN OVEN and H. J. DE LIEFDE MEIJER

Laboratorium voor Anorganische Chemie, Rijksuniversiteit, Groningen (The Netherlands) (Received March 22nd, 1972)

SUMMARY

The complex 1-methylallyl(cyclooctatetraene)titanium has been prepared by the reaction of cyclooctatetraenetitanium chloride and 1-methylallylmagnesium bromide. The IR spectrum shows the vibrations of the h^8 -C₈H₈ ligand and of a π bonded methylallyl group. The mass spectrum is also discussed.

 π -Allyl complexes of titanium, $(h^5-C_5H_5)_2$ TiR, in which $R = h^3$ -allyl or substituted allyl, have been reported by Martin *et al.*¹. In the course of our investigations on cyclooctatetraene complexes of titanium the compound 1-methylallyl(cyclooctatetraene)titanium, $(h^3-C_3H_4CH_3)$ Ti $(h^8-C_8H_8)$, was isolated. The complex, obtained by reaction of $[h^8-C_8H_8$ TiCl]₂² with 1-methylallylmagnesium bromide, CH₃C₃H₄MgBr, is sensitive to air and moisture. Differential thermal analysis (heating rate 2.5°/min) shows the compound to decompose at about 110°. The paramagnetic complex is soluble in common organic solvents.

The infrared spectrum of the compound indicates that the C_8H_8 ligand is symmetrically bonded to the metal atom, the normal vibrations of an h^8 - C_8H_8 group appearing in the usual ranges. Evidence for π -bonding of the 1-methylallyl group is found in the absorption band at 1500 cm⁻¹ (compare¹ (h^5 - C_5H_5)₂Ti(h^3 - $C_3H_4CH_3$): 1533 cm⁻¹). The following features were observed in the mass spectrum of the compound: the parent ion, $C_8H_8TiC_4H_7^+$ (m/e=207, I=100) breaks down by elimination of C_2H_4 giving the ion $C_8H_8TiC_2H_3^+$ (m/e=179, I=12). Degradation of this ion occurs via two pathways. In the first route C_2H_3 is lost giving the ion $C_8H_8Ti^+$ (m/e=152, I=95), which in turn loses C_2H_2 to give the ion $C_6H_6Ti^+$ (m/e=126, I=36). In the second pathway the ion $C_8H_8TiC_2H_3^+$ loses C_2H_2 giving the ion $C_6H_6Ti^-$ L=36). In the first num loses C_2H_3 to give the ion $C_6H_6Ti^+$ again. This fragmentation is in agreement with the degradation of other titanium complexes containing an h^8 - C_8H_8 or an h^3 -1-methylallyl group, for instance (h^8 - C_8H_8)Ti(h^5 - C_5H_5)³, $[h^8-C_8H_8TiCI]_2^4$ and ($h^5-C_5H_5$)₂ Ti($h^3-C_3H_4CH_3$)⁴.

Other ions observed in the mass spectrum are: $C_5H_5Ti^+$ (m/e=113, I=46), $C_4H_3Ti^+$ (m/e=99, I=14) $C_4H_2Ti^+$ (m/e= 98, I=15), $C_3H_3Ti^+$ (m/e=87, I=19) $C_3H_2Ti^+$ (m/e= 86, I= 8), C_3H Ti⁺ (m/e=85, I= 8) $C_2H_3Ti^+$ (m/e= 75, I= 9), $C_2H_2Ti^+$ (m/e=74, I=17) C_2H Ti⁺ (m/e= 73, I=30), Ti⁺ (m/e=48, I=45)

and purely organic ions with rather high intensities.

J. Organometal. Chem., 42 (1972)

EXPERIMENTAL

To a cooled (-80°) suspension of $[C_8H_8TiCl]_2^*(1.41 \text{ g}, 3.76 \text{ mmoles})$ in 125 ml of ether, 10.0 ml of a 0.75 M solution of $CH_3C_3H_4MgBr$ in ether were added in the course of 30 min. The reaction mixture was allowed to warm slowly to 0°. The original grass-green colour of the suspension gradually changed to brownish-green. After stirring for 4 h the solvent was removed under reduced pressure. Recrystallization from n-pentane gave brownish-green crystals of $(h^8-C_8H_8)Ti(h^3-C_3H_4CH_3)$; the yield was 0.78 g (3.76 mmoles, 50%). (Found: C, 69.70, 70.18; H, 7.65, 7.53; Ti, 22.71 22.88. $C_{12}H_{15}Ti$ calcd.: C, 69.61; H, 7.30; Ti, 23.09%).

All experiments were carried out in an atmosphere of purified nitrogen and the temperature was kept below 0°. The mass spectrum of the complex was run on an AEI MS 9 mass spectrometer. No ions were observed at m/e values above that of the parent ion, $C_{12}H_{15}Ti^+$. The Ti-containing ions showed the normal isotopic distribution of Ti; only ions with ⁴⁸Ti are given. The intensities I are uncorrected.

ACKNOWLEDGEMENTS

The authors wish to thank Professor Dr. F. Jellinek for his stimulating interest and Mr. A. Kievit for recording the mass spectrum.

REFERENCES

- 2 H. Lehmkuhl and K. Mehler, J. Organometal. Chem., 25 (1966) C44.
- 3 H. O. van Oven and H. J. de Liefde Meijer, J. Organometal. Chem., 19 (1969) 373.
- 4 H. O. van Oven and H. J. de Liefde Meijer, unpublished results.

J. Organometal. Chem., 42 (1972)

¹ H. A. Martin and F. Jellinek, J. Organometal. Chem., 8 (1967) 115; 12 (1968) 149; R. B. Helmholdt, F. Jellinek, H. A. Martin and A. Vos, Rec. Trav. Chim. Pays Bas, 86 (1967) 1263.

^{*} This complex was prepared by reaction of TiCl₃ with one mole of $K_2C_8H_8$ in tetrahydrofuran⁴.